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Abstract
Longitudinal biomarkers may be predictive for the early
detection of clinical outcomes. Tracking longitudinal
biomarkers as a way to identify early disease onset may
help to reduce mortality from diseases that are more
treatable if detected early. This review provides a brief
summary of a recent publication on statistical approaches
that use longitudinal biomarkers for disease early detection.
Comparison of statistical methods and future research
directions in general disease early detection using
longitudinal biomarkers are presented.
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Introduction
Early detection of diseases before clinical symptoms become

present may help to reduce mortality from diseases that are
more treatable if detected early [1]. Tracking longitudinal
biomarkers in a population may help to detect disease earlier,
since changes in serial biomarkers may be indicative for the
occurrence of disease [2-4]. An example is ovarian cancer, which
usually has no symptoms at its early stage and develops
undetected until it has spread within the abdomen and pelvis
[5]. Although early-stage ovarian cancer can be treated with a
higher success rate [6], the majority of ovarian cancer is
diagnosed at late stage, where curative treatment rarely exists
[7]. Meanwhile, large randomized trials have not shown a
survival benefit for current early detection approaches of
ovarian cancer so far [8,9]. Several recently developed statistical
approaches, the Risk of Ovarian Cancer Algorithm (ROCA), the
Pattern Mixture Model (PMM), and the Shared Random Effects
Model (SREM), have demonstrated their capacity for disease
early detection [10]. This review provides an overview of these
methods through discussing their theories and the comparison
in an application to ovarian cancer early detection.

Statistical Methods
To understand the unique patterns of ovarian cancer

biomarker trajectories, we considered samples from the

Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening
Trial, where the biomarker cancer antigen 125 (CA125) was
studied for screening. Trajectories of log transformed CA125 of
50 cases and 50 controls that were randomly selected from the
PLCO trial are shown in Figure 1. The CA125 profiles for cases
may be either flat or stay flat at first and then jump up at some
time point during the screening. To the contrary, the control
profiles almost always keep flat. The special patterns in the case
and control trajectories require advanced statistical modelling
strategies for the CA125 behaviors.

Figure 1: CA125 trajectories of 50 cases and 50 controls that
were randomly selected from the PLCO trial.

Risk of Ovarian Cancer Algorithm (ROCA) was explicitly
developed for the early detection of ovarian cancer using
repeatedly measured CA125 values [11]. In specific, ROCA
separately models the longitudinal CA125 trajectories for cases
and controls. For controls, a constant mean model of CA125 is
assumed with a random intercept term that accounts for subject
heterogeneity. As for cases, the averaged CA125 trajectory is
presumed to be piecewise linear with a latent subject-specific
change point. The risk of having ovarian cancer conditional on
CA125 values is then calculated using Bayes’ rule. Increased
CA125 values would raise suspicion for an undetected tumour
and thereby triggers more detailed diagnostic evaluation and
intensive follow-up, resulting in possible earlier detection of
ovarian cancer and earlier treatments [7]. Yet, several issues of
ROCA require attention: (1) the change point is assumed to have
a known truncated normal distribution, which may not be
reasonable for all study populations; (2) when modeling CA125
profiles, ROCA ignores the effects of screening time and other
covariates on marker trajectory change; (3) estimation of the
latent change point structure may be unreliable due to
measurement sparsity around the change point, which may be
caused by long screening interval, e.g., the annual screening
design of CA125 in the PLCO trial; and (4) ROCA only obtains an
approximated risk, the calculation of which involves
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marginalization over the diagnosis time, which is often unknown
for a new individual. As ROCA implements the marginalization
by borrowing information about the diagnosis time from
participants who have already been known as cases, it may
result in the loss of prediction accuracy. This is particularly true
when the sample size of known cases in a study is relatively
small. Nevertheless, extensions of ROCA can be easily made by
addressing the above issues.

Pattern Mixture Model (PMM) is a general framework that
separately formulates case and control biomarker trajectories
[12]. Mathematically, ROCA can be regarded as a special version
of the PMM framework. However, there are two key differences
between PMM and ROCA in the application of ovarian cancer
early detection: (1) instead of using a latent change point
structure in the case model, PMM uses natural cubic splines to
account for the nonlinear effects of screening time and other
baseline covariates on the CA125 profile development; and (2)
PMM calculates the exact cancer risk as it directly models CA125
conditional on disease status without marginalization over
diagnosis time and hence avoids the loss of prediction accuracy.

Shared Random Effects Model unlike PMM and ROCA, SREM
jointly models the combined case and control biomarker
trajectories and the binary disease outcome, which are assumed
to share the same set of random effects [13]. A linear mixed
effects model is assumed for the biomarker profiles while the
relation between disease status and random effects is
characterized by a probit link function. The joint distribution of
the biomarker and disease status can be derived by integrating
over the shared random effects, eventually inducing the formula
of calculating disease probability.

Discussion
Analyses of the PLCO ovarian cancer data found that the

predictive performance of PMM significantly outperformed
ROCA and SREM, while the latter two did not have significant
difference, under an annual screening setting of the biomarker
CA125. All three methods were generally well calibrated. Yet the
predictiveness curves showed that PMM and ROCA could place
more individuals in the tail areas of the risk distributions than
SREM, implying their potential usefulness in the clinical practice
of ovarian cancer early detection. Simulation results also
showed that those three approaches were generally well
calibrated under all data generation scenarios. The predictive
accuracy of all methods could be improved under more frequent
biomarker screenings, particularly ROCA, as the latent change
point structure would be better estimated with more
observations around the change point. For practical use, since
there is no guarantee that one model would be uniformly better
than the other, researchers may apply all three approaches and
compare their out-out-sample performances. PMM, ROCA, and
SREM can be further applied to other diseases such as prostate
cancer, the screening test of which often utilizes the biomarker
Prostate-Specific Antigen (PSA), which has similar behaviors as
CA125 for ovarian cancer early detection [14].

PMM, ROCA, and SREM are all constructed with a binary
outcome and do not fully use the cancer diagnosis time.

Therefore, their risk calculations cannot provide absolute risk
estimation, that is, the t-year disease-free survival since the last
biomarker screening. Landmark approach is an alternative
framework when the outcome of interest is time-to-event. This
approach would fit a Cox model to individuals who are event-
free at a given landmarking time. However, there are several
major differences between the landmark approach and PMM,
ROCA, and SREM: (1) the landmark approach does not assume
structure for longitudinal biomarker but estimates an empirical
distribution of the residual survival time based on repeatedly
cross-sectional biomarker observations before the land marking
time, while the PMM, ROCA, and SREM all use the longitudinal
biomarker information for risk prediction; and (2) the landmark
method deals with the time-to-event outcome while PMM,
ROCA, and SREM all treat the outcome as a dichotomized one,
leading to different interpretations of the estimated
probabilities [15,16].

Conclusion
Future methodological work may include extensions of PMM

and ROCA to the survival model framework and dynamic risk
prediction using both longitudinal biomarker values and survival
data. One choice for dynamic risk prediction is the Joint
Modeling (JM) approach, which jointly models the longitudinal
biomarker process and the survival processes through latent
shared random effects. However, the model assumptions of JM
are often strong and non-verifiable. Another option is the
Conditional Modeling (CM) approach, which models the
longitudinal biomarker process conditional on the survival time.
The CM approach may be sensible, as recent studies have shown
that the patterns of longitudinal biomarkers often depend on
the terminal event time and the dependence structure may
become increasingly evident as the screening time gets close to
the terminal event.
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